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CONTROL OF THE TEMPERATURE REGIME IN A LAYER OF HEAT-
CONDUCTING MATERIAL '

A. K, Sinitsyn and V. A. Novikov UDC 536,24.02

The article presents the solution of the problem of finding the optimum controlling

- heat flux on the boundary of a plane heat-conducting plate ensuring stabilization
of the temperature in the specified section with known disturbing heat flux on the
other boundary.

We are concerned with an infinite plane plate with thickness d, with the heat flux z(t)
being specified on one of its boundaries. We have to find such a heat flux u(t) on the other
boundary that in the specified section xo€[0, d] the regularity of change of temperature y(t)
is ensured.

In dimensionless form the problem is described by the one-dimensional heat-conduction
equation

ot o ' (1)

with boundary conditions of the second kind

6 .
Bl ;8 —up. >0, @
ox =0 0. x=2 :

the initial condition

8)r<o = 6, (%) 3)
and the condition
O, = y (1), 1 20, %€[0, =] (4)

In a fairly similar statement Kuznetsov [1] investigated the problem of stabilization
6(xo, t) without disturbing effect z(t). Stated somewhat similarly, the authors of [2, 3]
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also examined the problem but it was impossible to modify the methods of solution presented
by the authors to apply to the problem in question.

Most similar to the problem under examination is the approach of [4-6] where from the
value O(x¢, t) measured in x¢ the heat flux u(t) has to be determined on condition that the
heat flux z(t) is known or accurately measured. These authors explained in detail the me-
thod of solving linear as well as nonlinear [7] problems of this type. These problems may
be classed as identification of functional dependences inaccessible to mezsurement, and their
solution is complicated primarily because of the errors of measurement ancd the errors of
numerical solution, reducing such problems to Hadamard's 1ll-posed problems [8]. It is im-
portant here that when there are no errors of measurement, the functions 6(xo, t) and z(t)
always belong to the class of those functions for which the solution u(t) of Eq. (1) exists.
unambiguously and belongs to the class of physically realizable functioms.

The problem solved in the present work differs first of all by the fect that in the
general case z(t) belongs to the class of functions for which control of u(t) need not exist.
In that case we must speak of such a u(t) which would ensure the minimum of some selected
functional. ‘

A problem similar to the stated one was also examined in [9] where in principle the
authors reduced it to the previously mentioned problems of identification, but they solved
it in distinction to [4] by a more laborious and less universal method.

Applying the cosine transform to both sides of Eq. (1), we obtain

‘37 One (1) = —{(— 1) u(f) — 2 (#)] — 126, 0), (5)
~i(-

where

6. () = —j—-j‘ 8 (x, f)cos(nx)dx.
0

We take the Laplace transform from expression (5), and expressing Opnc(p) through the other
parameters, we obtain: A

(— 1). u (p)p__—:,gzp) + 6, (0) . (6)

’ @nc (p) =

The cosine series for O(x, p) can be written via the values of Gpe(p) in the form

L B (P) W o VYup 3 — 2 (o) ch [(t— D V5 + ¥ (2),
O(x, p) = —5=~ +n§@nc(p>cos(nx) 2sh(ny,§[”"’)°h"‘v”’ z(p)chi(n— 0Vl + ¥ (o),

where

v 800§ e (0)
¥ (p) = -—2;———{- g} PR cos (nx).

We now express the boundary comtrol u(p) through y(p), z(p), and ¥(p), taking condition (4) .
into account: '

u(p) = 2(p)ch[(—x0) V71 + ﬂ’z):_ﬂﬂsh(nm] - %)

1 .
Ch(xoV-P—) l vV n/p

If 6o(X) = Oo = const, then ¥(p) = ©o/p, and the introduction of the new function y(t) = y(t)
0o leads to the exclusion of the initial distribution ©,. BEenceforth we will take it that

y¢t) 2 0, {.e.,

M‘——- Z(P)KZ(XOs P) ®

u(p) = z(p) GV
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The solution of Eq. (8) in the domain of the original ensures that the temperature
©(x0, t) = 0 is maintained. Thus, the problem of stabilizing 6(xs, t) reduces to the
determination of the inverse Laplace transform from expression (8). For x¢e¢[n/2, ] this
problem is unambiguously solvable and requires either inversion of expression (8), if z(p)
is specified in the domain of the transform, or calculation of the integral of the convolu-
tion .

t

u(t) = [ 2(0) K, (xg, t—1)dr, %€ /2, m], (9)

0

if z(t) is specified in the domain of the original.
The Green function Kz(xg, t) is expressed analytically from Kz(xo, p) [10] by the form-

ula
oy [chi(n—x) V7] [ chlla—y) V7 1 @ it
Rutro 0= 11 [BSCAUH | [ BUemg V)10 (5 i
G ch (% ¥ p) ch(@V p) ooy "\ @ rpcza 0

where #,(x, 1) = 22 R Y () 1) nx) is Jacobi's theta function [11]. On the basis
k=0 .

of (10) we obtain for K,(ye, t):

- NIRRT
Ko (xo, 1) = 223 (2% + l)sin( % (k4 l))e (aias) ‘

X k=0 v2xb
%E[{;,n}.

In the special case for xo = n/2-Kz(x., t) =1, i.e., u(t) = z(t). For x¢ < /2 an inverse
transform of K_(xo, p) does not exist, and in such a case u(t) can be determined from the
golution of Voiterra's integral equation of the first kind with the kernel K(t, t) = K(t—1)
[121:

(11)

; . .
Z(t) = SKZ (n-‘JCo,- t—'—T)u (T)dT = A(xl)’ u(t))’ on[Ov ﬂ;/2)1 (12)
i R

where K,(m—xo, t—1) is the kernel of the integral transform corresponding to expression
(11). It is known [8, 12,13] that the equation in question requires regularizing algorithm
[14] to be advised. It was pointed out above that in the general case the heat flux z(t)
belongs to the class of functions for which a solution u(t)6C of Eq. (12) does not exist.

In this case we may speak of a solution u(t) for Eq. (12) only when the problem is stated in
variational form for minimization of the quadratic functional '

T4t ) ,
{ 1A (0, u(®) —2* ¢t — DPdt = min, (13)
0

where

w () = [0 920,
i { 0 y<0

T is the delay of the controlling flux u(t) relative to the "zero" of the flux z(t).

The existence of the delay 1 in the functional (13) must not be viewed as a purely arti-
ficial shift of the disturbance z(t) along the time axis by the time t* >topts and a new
disturbance z*(t) cannot be taken, for which with t < t* z*(t) = 0. In the investigated
class of problems the delay 1* has to be infinite in principle for attaining the absolute
"minimum" of the functional (13); in this sense it is in general analogous to the regulariza-~
tion parameter in inverse problems where the "best" solution of the problem is attained when
it is equal to zero. Insignificant deviations of the functional (13) for t > Topt have to
correspond to the optimum value t1,,; whereas insignificant deviations of the form of the con-
trolling action u(t) for T < 1,5 have to correspond to Topt. In the present work Topt Vas
chosen in particular on the basis of such congsiderationms.
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We will minimize the functional (13) for u(t) belonging to the class of functions such
that o

i () < u‘(t) < Umax (8)- (14)

We point out that for the correctness of the problem of minimizing the funstional (13), con-
dition (14) is indispensable. In the interval [0, T] we take a uniform grid with the number
of divisions np and a step AT = T/np. We determine the number of divisions for the time of
delay T by the expression

. |
= [‘XZ'] +1 (15)

and we denote the total number of divisions in the interval [0, T + t] by N = nr + n,. We
will seek the solution u(t) in the form of piecewise-constant functions, such that
u; = u(t€ (At — 1), At)).

We will approximate the integrals contained in (13) by quadrature formulas using the
values in the i-th nodes of the grid. As a result of obtain a problem of minimization in
quadratic form

N i . . . .
2 % [zKﬂli—H—l —Z?} = min, (16)
i=1 =1

wvhere
jAt ' ,
* 3 2i—nt, l?""r'
K= | K@, z-*=z*<t-—r)={ .
ST SV l 5 ' 0 ,i<ny,
' a__{l,i:;&_l,N,
"“lije, i=1, N.
The functional (16) may be written in matrix form:
’ ‘ TAsl) — UTR = mi
| 1/2U" A*U = U’ B = min, an
where
: N—it+1
A== Y KKy, i 21,
== jmiep1
N ’ .
B; = 2 Apti—1 Kn—H—lz:y UT = {1y, Uy, Us, ... , unl-
n=i

The matrix A* in the quadratic form (17) is positively determined [15]; this follows from
a comparison of (17) and (16). However, for a certain kind of dependence of the kernmel K(t)
the matrix A* may be close to degenerate, and the problem of minimizing the quadratic form
(17) will be ill-posed because of errors of calculation in the algorithm for minimization.
For regularization of problem (17) we use the Tikhonov stabilizer Q,(u(t)) for n = 0 ensur-
ing weak regularization [13], and with it taken into account, the quadratic form of (17)

then appears as _
1/20"AU — U™ B = min,

(18)
where A = A* + oE, a is the parameter of weak regularization. The quadratic form of (18)
has to be minimized with respect to the vector U with the constraints
Umln <’U < Umax.v (19)‘
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ensuing from the equality (14), where

r .
U,Tnin“: [Uimin, Homins - -« » UNminks Umax = [imay, Ysmags - - - » UNmax]-

The parameter « is chosen on the basis of the requirement of ensuring positive deter-
minacy of the matrix A in the count.

The problem of minimizing the quadratic form (18) with constraints type (19) and a
positively determined matrix A is a problem of quadratic programming [16] which can be
solved by the method of Lagrange multipliers [15]. The Lagrange function for (18) has the
form

LU, &)= -LUTAU——UTB-I—AT (D—CU), (20)

where A is the vector of the Lagran%e multipliers, Ai >0; D, C are obtained from the con-
straints (19): DT = [UT —-UT = [E, —E], E is the unique diagonal matrix of dimen-
sionality N,

The solution of problem (18) is the saddle point (U*, A*) of the Lagrange fumction (20)
satisfying the system of equations [16]:

Tl C

| CU*>D; 3*0; AU*— B =CTA*
AU*—B =C") 1)

with the conditions of complementariness
AF(CU*); —D) =0, i=1,2, ..., N

The algorithm for seeking the saddle point of the Lagrange function in the given problem
is greatly simplified because of the singular types of matrices D, C, and it reduces to the
algorithm presented below.

We assume that in U we distinguish two sets: the set of "removals" U, consisting of the
.components of the vector U for which

U; = (Uimax U Uimin)» (22)

and the set of "inclusions" U' consisting of the components remaining in U after formation
of the set U™, for which

Uimin << U; < Uimax- (23)

Expressions (22), (23) are analogous to the conditions of complementariness of the system
(21).

The algorithm fbr_seeking the saddle point consists in the successive verification whe-
ther the sets U' and U contain certain conditions. For the set U we find the solution U +
of the system of equations
A*U*‘l = B+,
(24)
where the matrices A+, B were obtained from A, B by removing the rows corresponding to the

set U”. After determining U ', we find the vector § each of whose components is determined
by the expression

u; u - e

6; = ————————-’ma" ~uf >ty [T/, u;*'< uy.

+ F__oF
u;" — uj uf —u;

If among the components of the vector & there are values §; < 1, the value £; = min 84 is
also sought, and to obtain the new set UT the following re axation is effectdd: /.

= [0 — U*)e; + U*,

whereupon the element j is transferred from the set UV to the set U7, and for the new set
ut the system of equations (24) is again: solved.
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Fig. 1. 7Time dependences of the optimal
controlling fluxes u(t): a) z(t) = at for
a equal to: 1) 0.68; 2) 0.4; 3) 0.2; 4)
0.08; b) z(t) = 0.68t with different val-
ues of upae: 1) 16; 2) 10; 3) 6; ¢) z(t) =
for different upay: 1) 15 2) 2; 3) 3; 4) 4.

When the condition Y84 2> 1 for elements of the vector § is fulfilled, the set U™ is
tested according to the conditions '

(A U) < B 14 = Uiy, (25)
(A"U)i } Bz U = Uimigy

which correspond to the third equation of system (21). If the conditions (25) are not ful-
filled for the subscript i, then the corresponding i-th element is transferred from U™ to U',
and then the set U is analyzed. When conditions (25) are fulfilled for Vuj, then the ob-
tained sets Ut and U™ are the solution of the problem of minimization of the quadratic form
(18) with the constraints (19). : ; '

The presented algorithm is distinguished by the simplicity of its realization and highly
rapid effect. Like with any problem of regularization, the efficiency of the algorithm de-
pends on the correct selection of the parameter o of the Tikhonov stabilizer Qo(u(t)).

The realization of the presented algorithm for minimizing the functional (13) with the
constraints (14) was effected in FORTRAN for a BESM~6 computer. With the aid of the program
the controlling flux u(t) with disturbing flux z(t), corresponding to the expression z(t) =
at, t =0, for different values of 4@, was sought.

The constraints (14) for u(t) were taken for upyn, (t) = uyyn = const and umax () = ugax=
const. The graphs of the dependence u(t) for xo = 0, a = var, upg, = =5, v, =+ 5 are
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shown in Fig. la, and of the dependence u(t) for a = 0.68, uyjp = —5, X0 = 0, up,, = var.
in Fig. 1b.

It can be seen from the presented graphs that for u(t) there takes place a forced re-
gime in which "acceleration" of the system and then its "braking”" is ensured. In the forced
regime the shape of u(t) is decisively affected by the values upy,y, Upip On which the magni-
tude of the delay 1 and the discrepancy IIA (%0, u(t))-z(t)[]c depend; for the specified
z(t) the maximum discrepancy occurs for t = 0. We point out that for the problem under
examination, there may be no forced regime only when the disturbance z(t) is specified such
that for it all derivatives up to the infinite one exist on the segment t = 0. It should be
expected that the forced regime will be hardest when z(t) has discontinuities of the first
kind, and inparticular, when the disturbance z(t) changes jumplike from zero to Zpayx in such
a way that z(t) = zp,y for t > 0. It is characteristic that for similar disturbances we have
to determine most often only the quasioptimal control of u(t) ensuring that

A (o, @) — 2D, < a6

on condition that ‘
[l (¢ + ©) — z (B)llc = min, (27)

and that the time of delay Tt in principle is not bounded. 1In Fig. lc there are illustrated
several controls u(t) for z(t) =1, t< 0, distinguished by the constraint of upyay. The selection
of the corresponding regularity u(t) depends on the value of y in the condition (26), and

then (27) is automatically fulfilled. We point out that with large values of y, the control
u(t) repeats the regularity of the change z(t) with the delay 1 (curve 4 in Fig. lc).

The suggested algorithm, and most importantly, the devised program may be used for a
large range of problems of similar type without any substantial alterations. In particular,
Eq. (1) may be replaced by a similar equation in cylindrical coordinates, and also the
boundary conditions (2) may be of the first or third kind. At the same time the Green func-
tion K;(x%o, t), which is analogous to (10), can be obtained both analytically and by the
known numerical methods.

NOTATION

©, temperature; L™', inverse Laplace transform} A (...), linear tramsform; L(u, A),
Lagrange function; A, vector of the Lagrange multipliers; Q,, Tikhonov stabilizer; a; param—
eter of weak regularization.
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DURATION OF THE FREEZING OF BODIES WITH VARIABLE TEMPERATURE
OF THE MEDIUM

V. P. Koval'kov UDC 536.2

The article contains an analysis of the application of the integral method of ther-
mal moments of zeroth order in determining the duration of freezing of bodies with
simple shape when the temperatures of the cooling medium is variable.

Approximate analytical solutions of unidimensional Stefan-type problems for determining
the duration of processes of nonsteady heat conduction are conveniently found by using the
so-called integral methods [1l]. To these also belongs the method of thermal moments of
zeroth order [2]. The application of this method to problems with phase transformations
at constant temperature of the medium was studied, e.g., in [3, 4]. The essence of the
method is that the initial integral relation is obtained as a result of integrating the
principal differential equation of heat conduction twice with respect to the space coordin-
ate and once with respect to time. Into this relation we then substitute the equations of
the temperature distribution profiles (invariant to shifts of the front of phase transforma-
tion) and the regularity of change of the cooling (heating) impulse on the surface of the
body, determined as the area in coordinates temperature vs time between the lines of tem-
perature change at the end of the investigated region (body).

The method of thermal moments of . zeroth order may also be applied to determining the
time of motion of the fronts of phase transformation in bodies of simple shape when the
temperature of the medium is variable. Although it is expedient to use the integral state-
ment of the problem [4], we demonstrate below how to obtain the initial integral relation
of the thermal moments from the differential statement of the problem because the method

itself is relatively little known.

Let us examine the problem of the cooling of bodies with simple shape (sphere, un-
bounded cylinder, aqdplate) with phase transformations

camuniﬂg%ﬂ-=€%(xWMu@EE%%QJ,0<g<k (1)
T (x, 0) = T, (x); (2)
T, v _ o (3)
ox ’
6T(l T, v %)

a@T L 1)—Te () =—A(T(, 7)) - -
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